Topological degree in the generalized Gause prey-predator model
نویسنده
چکیده
We consider a generalized Gause prey-predator model with T -periodic continuous coefficients. In the case where the Poincaré map P over time T is well defined, the result of the paper can be explained as follows: we locate a subset U of R2 such that the topological degree d(I −P,U) equals to +1. The novelty of the paper is that the later is done under only continuity and (some) monotonicity assumptions for the coefficients of the model. A suitable integral operator is used in place of the Poincaré map to cope with possible non-uniqueness of solutions. The paper, therefore, provides a new framework for studying the generalized Gause model with functional differential perturbations and multi-valued ingredients.
منابع مشابه
Prey-Predator System; Having Stable Periodic Orbit
The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.
متن کاملOn Nonlinear Dynamics of Predator-Prey Models with Discrete Delay∗
In this survey, we briefly review some of our recent studies on predator-prey models with discrete delay. We first study the distribution of zeros of a second degree transcendental polynomial. Then we apply the general results on the distribution of zeros of the second degree transcendental polynomial to various predator-prey models with discrete delay, including Kolmogorov-type predator-prey m...
متن کاملDynamics of an eco-epidemic model with stage structure for predator
The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...
متن کاملPeriodic Solutions in Periodic Delayed Gause-Type Predator-Prey Systems
Reasonable sufficient conditions are obtained for the existence of positive periodic solutions in periodic delayed Gause-type predator-prey systems. Our approach involves the application of coincidence degree theorem and estimations of uniform upper bounds on solutions. This method imposes minimum restrictions on the form and magnitude of time delays. Indeed, our results are applicable to discr...
متن کاملOn the Gause predator-prey model with a refuge: a fresh look at the history.
This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical p...
متن کامل